The Internet of Things: Optics Opportunities

The Internet of Things (IoT) represents a vast array of opportunities for optics given the sheer number of technologies that will be connected to the internet in the future. From wearables to home monitoring systems, and from the tiniest camera modules to gesture recognition optics, the highest quality components will be in demand for groundbreaking technologies in our networked future.  In burgeoning healthcare, automotive, smart homes, and communication developments, exciting challenges await for our optics assembly equipment and, of course, the entire manufacturing sector.

Smart car, smart phone, smart watch, drone

The Internet of Things (IoT) will drive future growth. (Source: Jabil)

The Internet of Things is poised to be a major driver of economic growth in the near future. Cisco predicts that by 2020 there will be 50 billion things connected to the Internet, generating revenues of more than $19 trillion. However, building the IoT up to that level will not be a simple task.

In April 2015, Jabil sponsored a Dimensional Research global survey of more than 300 supply chain professionals at companies that manufacture electronics goods. While 75 percent of those surveyed are planning, developing or producing IoT-related products, 77 percent admit they lack the expertise in-house needed to deliver them.  That shows there are some major knowledge gaps that must be filled, but once they are, there is great potential for producing new internet-enabled products and services.

Those surveyed saw value in using data from the IoT to drive product innovation.  About half of them believed that data gathered from the IoT could potentially help in: delivering new product capabilities; creating new products, services, or business models; understanding failures to improve quality; and measuring feature usage to inform user design.  It is an exciting time for the Internet of Things as we look toward the future.  We at Kasalis hope to contribute meaningfully to the digital integration of the world around us.

Wearable, Implantable, and Sensing Technologies

Wearables: Fitness Trackers

Wearables: Fitness Trackers

Wearable technology is a trending term now used for a wide array of products – from fitness trackers and smart watches to the latest augmented reality glasses – all of which connect wirelessly to your smartphone or computer from its place on your body.  The growing wearable market is expected to reach over $70 billion by 2025 (IDTechEx).  Indeed, wearables are on the rise; meanwhile, innovators are thinking hard about the next phase of this category: testing out personal technology concepts that push the envelope.

Auger Loizeau’s Audio Tooth Implant

Auger Loizeau’s Audio Tooth Implant

Further emphasizing the cyborg-like qualities of wearable technologies are implantable wearables – that’s right, connected devices inside your body. Pictured here is a tooth implant which, in a spy-like fashion, is embedded with a miniature audio output and receiver to bring communication capabilities to its user’s mouth. A modified mobile telephone or dedicated device is used to receive the long-range signal.

Project Underskin

Project Underskin

There are also devices that can be embedded just below the surface of the skin to detect vitals or unlock a smart door. Devices such as this will send internal data or images to an app and will likely be able to run on energy from our body. Depending on the device, these could be used for an array of purposes, including to monitor diseases, communicate with doctors, and even treat ailments by releasing medication into your body via remote control.

Nest thermostat

Nest thermostat

In yet another take on personal sensors, tech writers have coined the new concept of “senseables,” described as a series of sensors embedded throughout an environment that provide users with instant data feedback to customize their experience. Cameras assembled with active alignment could potentially be needed to actualize this technology. For instance, Audi has recently unveiled Pre-Sense, for which a number of sensors are embedded inside a car to measure a driver’s emotions, body language, and involuntary reactions. This data is then used to automatically adjust safety mechanisms within the car; for example, if a driver is distracted, the car safety control will ensure it does not drift into an adjacent lane. Similarly, sensors embedded in the Nest thermostat automatically adjust the temperature when particular events in the environment are detected.

So going beyond wearable cameras and smart watches toward implanted and surrounding sensing technologies is not just science fiction…it will soon be part of our reality.